Str Error When Replacing Values In Pandas Dataframe
My code scrapes information from the website and puts it into a dataframe. But i'm not certain why the order of the code will give rise to the error: AttributeError: Can only use .
Solution 1:
For me works double replace - first with regex=True for replace substrings and second for all values:
np.random.seed(23)
df = pd.DataFrame(np.random.choice(['(2,333)','n.a.','-',2.34], size=(3,3)),
columns=list('ABC'))
print (df)
A B C
0 2.34 - (2,333)
1 n.a. - (2,333)
2 2.34 n.a. (2,333)
df1 = df.replace(['\(','\)','\,'], ['-','',''], regex=True).replace(['-','n.a.'], np.nan)
print(df1)
A B C
0 2.34 NaN -2333
1 NaN NaN -2333
2 2.34 NaN -2333
df1 = df.replace(['-','n.a.'], np.nan).replace(['\(','\)','\,'], ['-','',''], regex=True)
print(df1)
A B C
0 2.34 NaN -2333
1 NaN NaN -2333
2 2.34 NaN -2333
EDIT:
Your error means you want replace some non string column (e.g. all columns are NaNs in column B) by str.replace:
df1 = df.apply(lambda x: x.str.replace('\(','-').str.replace('\)','')
.str.replace(',','')).replace(['-','n.a.'], np.nan)
print(df1)
A B C
0 2.34 NaN -2333
1 NaN NaN -2333
2 2.34 NaN -2333
df1 = df.replace(['-','n.a.'], np.nan)
.apply(lambda x: x.str.replace('\(','-')
.str.replace('\)','')
.str.replace(',',''))
print(df1)
AttributeError: ('Can only use .str accessor with string values, which use np.object_ dtype in pandas', 'occurred at index B')
dtype of column B is float64:
df1 = df.replace(['-','n.a.'], np.nan)
print(df1)
A B C
0 2.34 NaN (2,333)
1 NaN NaN (2,333)
2 2.34 NaN (2,333)
print (df1.dtypes)
A object
B float64
C object
dtype: object
Post a Comment for "Str Error When Replacing Values In Pandas Dataframe"