Skip to content Skip to sidebar Skip to footer

Python Pandas: DataFrame Filter Negative Values

I was wondering how I can remove all indexes that containing negative values inside their column. I am using Pandas DataFrames. Documentation Pandas DataFrame Format: Myid - value

Solution 1:

You can use all to check an entire row or column is True:

In [11]: df = pd.DataFrame(np.random.randn(10, 3))

In [12]: df
Out[12]:
          0         1         2
0 -1.003735  0.792479  0.787538
1 -2.056750 -1.508980  0.676378
2  1.355528  0.307063  0.369505
3  1.201093  0.994041 -1.169323
4 -0.305359  0.044360 -0.085346
5 -0.684149 -0.482129 -0.598155
6  1.795011  1.231198 -0.465683
7 -0.632216 -0.075575  0.812735
8 -0.479523 -1.900072 -0.966430
9 -1.441645 -1.189408  1.338681

In [13]: (df > 0).all(1)
Out[13]:
0    False
1    False
2     True
3    False
4    False
5    False
6    False
7    False
8    False
9    False
dtype: bool

In [14]: df[(df > 0).all(1)]
Out[14]:
          0         1         2
2  1.355528  0.307063  0.369505

If you only want to look at a subset of the columns, e.g.[0, 1]:

In [15]: df[(df[[0, 1]] > 0).all(1)]
Out[15]:
          0         1         2
2  1.355528  0.307063  0.369505
3  1.201093  0.994041 -1.169323
6  1.795011  1.231198 -0.465683

Solution 2:

You could loop over the column names

for cols in data.columns.tolist()[1:]:
    data = data.ix[data[cols] > 0]

Solution 3:

To use and statements inside a data-frame you just have to use a single & character and separate each condition with parenthesis.

For example:

data = data[(data['col1']>0) & (data['valuecol2']>0) & (data['valuecol3']>0)]

Solution 4:

If you want to check the values of an adjacent group of columns, for example from the second to the tenth:

df[(df.ix[:,2:10] > 0).all(1)]

You can also use a range

df[(df.ix[:,range(1,10,3)] > 0).all(1)]

and an own list of indices

mylist=[1,2,4,8]
df[(df.ix[:, mylist] > 0).all(1)]

Post a Comment for "Python Pandas: DataFrame Filter Negative Values"