How Can I Convert Columns To Rows In Pandas?
I have something like this: Values Time 22 0 45 1 65 2 78 0 12 1 45 2 and I want this: Time 0 1 2 Val1 22
Solution 1:
This is pivot
creating the index with cumcount
df['idx'] = 'Val' + (df.groupby('Time').cumcount()+1).astype(str)
df.pivot(index='idx', columns='Time', values='Values').rename_axis(None)
Output:
Time 0 1 2
Val1 22 45 65
Val2 78 12 45
Solution 2:
You need to transpose your array/matrix.
Use
list(map(list, zip(*l)))
where list is your list
Solution 3:
If your time-delta is constant, ordered and has no missing values:
DELTA = 3
new_values = [df['Values'].iloc[i*DELTA:i*DELTA+DELTA].values.transpose() for i in range(int(len(df)/DELTA))]
df_new = pd.DataFrame(new_values , index=['Val'+str(i+1) for i in range(len(new_values ))])
print(df_new)
0 1 2
Val1 22 45 65
Val2 78 12 45
Not a pretty solution, but maybe it helps. :-)
Post a Comment for "How Can I Convert Columns To Rows In Pandas?"