Itertools.groupby() Not Grouping Correctly
I have this data: self.data = [(1, 1, 5.0), (1, 2, 3.0), (1, 3, 4.0), (2, 1, 4.0), (2, 2, 2.0)] When I run this code: for mid,
Solution 1:
itertools.groupby collects together contiguous items with the same key.
If you want all items with the same key, you have to sort self.data
first.
for mid, group in itertools.groupby(
sorted(self.data,key=operator.itemgetter(1)), key=operator.itemgetter(1)):
Solution 2:
Variant without sorting (via dictionary). Should be better performance-wise.
def full_group_by(l, key=lambda x: x):
d = defaultdict(list)
for item in l:
d[key(item)].append(item)
return d.items()
Solution 3:
Below "fixes" several annoyances with Python's itertools.groupby
.
def groupby2(l, key=lambda x:x, val=lambda x:x, agg=lambda x:x, sort=True):
if sort:
l = sorted(l, key=key)
return ((k, agg((val(x) for x in v))) \
for k,v in itertools.groupby(l, key=key))
Specifically,
- It doesn't require that you sort your data.
- It doesn't require that you must use
key
as named parameter only. - The output is clean generator of
tuple(key, grouped_values)
where values are specified by 3rd parameter. - Ability to apply aggregation functions like sum or avg easily.
Example Usage
import itertools
from operator import itemgetter
from statistics import *
t = [('a',1), ('b',2), ('a',3)]
for k,v in groupby2(t, itemgetter(0), itemgetter(1), sum):
print(k, v)
This prints,
a 4
b 2
Post a Comment for "Itertools.groupby() Not Grouping Correctly"