Slicing A Tensor Along A Dimension With Given Index
suppose I have a tensor: tensor = tf.constant( [[[0.05340263, 0.27248233, 0.49127685, 0.07926575, 0.96054204], [0.50013988, 0.05903472, 0.43025479, 0.41379231, 0.86508251],
Solution 1:
You can use tf.one_hot()
to mask index_tensor
.
index = tf.one_hot(index_tensor,tensor.shape[1])
[[0. 0. 1. 0.][0. 1. 0. 0.][0. 0. 0. 1.]]
Then get your result by tf.boolean_mask()
.
result = tf.boolean_mask(tensor,index)
[[0.02033722 0.11996034 0.57675261 0.12049974 0.65760677][0.01657461 0.28126666 0.64016929 0.48365073 0.26672697][0.52787814 0.17085317 0.83711126 0.40567032 0.71386498]]
Solution 2:
tensor = tf.constant(
[[[0.05340263, 0.27248233, 0.49127685, 0.07926575, 0.96054204],
[0.50013988, 0.05903472, 0.43025479, 0.41379231, 0.86508251],
[0.02033722, 0.11996034, 0.57675261, 0.12049974, 0.65760677],
[0.71859089, 0.22825203, 0.64064407, 0.47443116, 0.64108334]],
[[0.18813498, 0.29462021, 0.09433628, 0.97393446, 0.33451445],
[0.01657461, 0.28126666, 0.64016929, 0.48365073, 0.26672697],
[0.9379696 , 0.44648103, 0.39463243, 0.51797975, 0.4173626 ],
[0.89788558, 0.31063058, 0.05492096, 0.86904097, 0.21696292]],
[[0.07279436, 0.94773635, 0.34173115, 0.7228713 , 0.46553334],
[0.61199848, 0.88508141, 0.97019517, 0.61465985, 0.48971128],
[0.53037002, 0.70782324, 0.32158754, 0.2793538 , 0.62661128],
[0.52787814, 0.17085317, 0.83711126, 0.40567032, 0.71386498]]])
with tf.Session() as sess :
sess.run( tf.global_variables_initializer() )
print(sess.run( tf.concat( [ tensor[0:1,2:3], tensor[1:2,1:2], tensor[2:3,3:4] ] , 1 ) ))
This will print the values like this.
[[[0.02033722 0.11996034 0.5767526 0.12049974 0.6576068 ]
[0.01657461 0.28126666 0.64016926 0.48365074 0.26672697]
[0.52787817 0.17085317 0.83711123 0.40567032 0.713865 ]]]
Post a Comment for "Slicing A Tensor Along A Dimension With Given Index"