Extend Pandas Datetime Index To Present Date
I have a pandas dataframe with following index: DatetimeIndex(['2013-04-16', '2013-04-17', '2013-04-18', '2013-04-19', '2013-04-20', '2013-04-21', '2013-04-22', '201
Solution 1:
You can use Index.union
with date_range
and max
value of index
:
idx = pd.DatetimeIndex(['2017-07-07', '2017-07-08', '2017-07-09', '2017-07-10',
'2017-07-11', '2017-07-12'])
idx = pd.date_range(idx.max(),pd.datetime.today()).union(idx)
print (idx)
DatetimeIndex(['2017-07-07', '2017-07-08', '2017-07-09', '2017-07-10',
'2017-07-11', '2017-07-12', '2017-07-13', '2017-07-14',
'2017-07-15'],
dtype='datetime64[ns]', freq='D')
Or select last value by [-1]
:
idx = pd.date_range(idx[-1],pd.datetime.today()).union(idx)
print (idx)
DatetimeIndex(['2017-07-07', '2017-07-08', '2017-07-09', '2017-07-10',
'2017-07-11', '2017-07-12', '2017-07-13', '2017-07-14',
'2017-07-15'],
dtype='datetime64[ns]', freq='D')
Post a Comment for "Extend Pandas Datetime Index To Present Date"