Skip to content Skip to sidebar Skip to footer

How To Make A Structured Array From Multiple Simple Array

import numpy as np a=np.array([1,2,3,4,5,6,7,8,9]) b=np.array(['a','b','c','d','e','f','g','h','i']) c=np.array([9,8,7,6,5,4,3,2,1]) datatype=np.dtype({ 'names':['num','char','le

Solution 1:

You might as well try numpy.rec.fromarrays.

import numpy as np

a=np.array([1,2,3,4,5,6,7,8,9])
b=np.array(["a","b","c","d","e","f","g","h","i"])
c=np.array([9,8,7,6,5,4,3,2,1])

d = np.rec.fromarrays([a,b,c], formats=['i','S32','i'], names=['num','char','len'])

Although timings are not as good as using itertools.

In [2]: %timeit d = np.rec.fromarrays([a,b,c], formats=['i','S32','i'], names=['num','char','len'])
10000 loops, best of 3: 86.5 us per loop

In [6]: import itertools

In [7]: %timeit np.fromiter(itertools.izip(a,b,c),dtype=datatype)
100000 loops, best of 3: 11.5 us per loop

Solution 2:

zip does create a list of tuples, which could be memory-intensive if the arrays are big. You could use itertools.izip to be more memory-efficient:

import itertools
d=np.fromiter(itertools.izip(a,b,c),dtype=datatype)

For small arrays of length ~10:

In [68]: %timeit np.fromiter(itertools.izip(a,b,c),dtype=datatype)
100000 loops, best of 3: 15.8 us per loop

In [69]: %timeit np.array(zip(a,b,c),dtype=datatype)
10000 loops, best of 3: 20.8 us per loop

For arrays of length ~10000:

In [72]: A=np.tile(a,1000)
In [74]: B=np.tile(b,1000)
In [75]: C=np.tile(c,1000)

In [83]: %timeit np.fromiter(itertools.izip(A,B,C),dtype=datatype)
100 loops, best of 3: 10.7 ms per loop

In [84]: %timeit np.array(zip(A,B,C),dtype=datatype)
100 loops, best of 3: 12.7 ms per loop

So np.fromiter appears to be slightly faster than np.array.

Post a Comment for "How To Make A Structured Array From Multiple Simple Array"