Plotting Streamlines With Matplotlib - Python
I'm trying to plot some streamlines with Matplotlib. I have this code so far, as an example to plot a 10 x 10 vector field: def plot_streamlines(file_path, vector_field_x, vector_f
Solution 1:
The pylab examples use Y,X
then plot X,Y for streamplots using numpy.mgrid.
import numpy as np
import matplotlib.pyplot as plt
Y, X = np.mgrid[-3:3:100j, -3:3:100j]
U = -1 - X**2 + Y
V = 1 + X - Y**2
speed = np.sqrt(U*U + V*V)
plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)
plt.colorbar()
f, (ax1, ax2) = plt.subplots(ncols=2)
ax1.streamplot(X, Y, U, V, density=[0.5, 1]
lw = 5*speed/speed.max()
ax2.streamplot(X, Y, U, V, density=0.6, color='k', linewidth=lw)
plt.show()
Taken from here.
y,x = numpy.mgrid[-2:2:4j,-2:2:4j]
x = [[-2. -0.66666667 0.66666667 2. ]
[-2. -0.66666667 0.66666667 2. ]
[-2. -0.66666667 0.66666667 2. ]
[-2. -0.66666667 0.66666667 2. ]]
y = [[-2. -2. -2. -2. ]
[-0.66666667 -0.66666667 -0.66666667 -0.66666667]
[ 0.66666667 0.66666667 0.66666667 0.66666667]
[ 2. 2. 2. 2. ]]
There seems a direct relation with how the data looks in regard to x and y axis, the -2,2 etc.. resembling an x-axis and y values resembling a y-axis.
Solution 2:
According to streamplot
documentation:
x, y : 1d arrays
an evenly spaced grid.
In your case a verbose equivalent to Y, X = np.mgrid[-3:3:100j, -3:3:100j]
is:
x = np.linspace(-3, 3, 100)
y = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(x, y)
and you can safely pass x, y
or y, x
to streamplot
.
However, (a bit lenient ?) 2-d arrays seem to be accepted in case they are of the form X, Y = numpy.meshgrid(x_1d, y_1d)
. But unfortunately not Y, X = numpy.meshgrid(x_1d, y_1d)
.
Post a Comment for "Plotting Streamlines With Matplotlib - Python"