Python Pandas Conditional Replace String Based On Column Values
Given these data frames...: DF = pd.DataFrame({'COL1': ['A', 'B', 'C', 'D','D','D'], 'COL2': [11032, 1960, 11400, 11355, 8, 7], 'year': ['20
Solution 1:
This looks like you want to updateDF with data from DF2.
Assuming that all values in DF2 are unique for a given pair of values in ColX and ColY:
DF = DF.merge(DF2.set_index(['ColX', 'ColY'])[['ColZ']],
how='left',
left_on=['COL1', 'year'],
right_index=True)
DF.COL2.update(DF.ColZ)
del DF['ColZ']
>>> DF
COL1 COL2 year
0 A 1103220161 B 196020172 C 1140020183 D 1135520194 D 820205 D 1002021I merge a temporary dataframe (DF2.set_index(['ColX', 'ColY'])[['ColZ']]) into DF, which adds all the values from ColZ where its index (ColX and ColY) match the values from COL1 and year in DF. All non-matching values are filled with NA.
I then use update to overwrite the values in DF.COL2 from the non-null values in DF.ColZ.
I then delete DF['ColZ'] to clean-up.
If ColZ matches an existing column name in DF, then you would need to make some adjustments.
An alternative solution is as follows:
DF = DF.set_index(['COL1', 'year']).update(DF2.set_index(['ColX', 'ColY']))
DF.reset_index(inplace=True)
The output is identical to that above.
Post a Comment for "Python Pandas Conditional Replace String Based On Column Values"