How To Flatten Multiple, Deeply Nested, Json Files, Into A Pandas Dataframe?
I'm trying to flatten deeply nested json files. I have 22 json files which i want to gather in one pandas dataframe. I managed to flatten them with json_normalize to the second lev
Solution 1:
- Use the
flatten_json
function, as described in SO: How to flatten a nested JSON recursively, with flatten_json?- This will flatten each JSON file wide.
- This function recursively flattens nested JSON files.
- Copy the
flatten_json
function from the linked SO question.
- Use
pandas.DataFrame.rename
, to rename any columns, as needed.
import json
import pandas as pd
# list of files
files = ['test1.json', 'test2.json']
# list to add dataframe from each file
df_list = list()
# iterate through files
for file in files:
with open(file, 'r', encoding='utf-8') as f:
# read with json
data = json.loads(f.read())
# flatten_json into a dataframe and add to the dataframe list
df_list.append(pd.DataFrame.from_dict(flatten_json(data), orient='index').T)
# concat all dataframes together
df = pd.concat(df_list).reset_index(drop=True)
# display(df)
_id actType entries_0_text entries_0_isDocumentationNode entries_0_children_0_text entries_0_children_0_isDocumentationNode entries_0_children_1_text entries_0_children_1_isDocumentationNode entries_0_children_2_text entries_0_children_2_isDocumentationNode entries_0_children_2_children_0_text entries_0_children_2_children_0_isDocumentationNode entries_0_children_2_children_0_children_0_text entries_0_children_2_children_0_children_0_isDocumentationNode entries_0_children_2_children_0_children_0_children_0_text entries_0_children_2_children_0_children_0_children_0_isDocumentationNode entries_0_children_2_children_0_children_0_children_0_children_0_text entries_0_children_2_children_0_children_0_children_0_children_0_isDocumentationNode entries_0_children_2_children_0_children_0_children_0_children_1_text entries_0_children_2_children_0_children_0_children_0_children_1_isDocumentationNode entries_0_children_2_children_0_children_0_children_0_children_2_text entries_0_children_2_children_0_children_0_children_0_children_2_isDocumentationNode entries_0_children_2_children_0_children_0_children_0_children_3_text entries_0_children_2_children_0_children_0_children_0_children_3_isDocumentationNode
0 test1 FINDING U Ergebnis: False U3: Standartext True Brückner durchgeführt o.p.B. True Normale körperliche und altersgerecht Entwicklung True J1/2 False Schule: True Ziel Abitur True läuft True gefährdet True läuft True gefährdet True
1 test2 FINDING U Ergebnis: False U3: Standartext True Brückner durchgeführt o.p.B. True Normale körperliche und altersgerecht Entwicklung True J1/2 False Schule: True Ziel Abitur True läuft True gefährdet True NaN NaN NaN NaN
Data
test1.json
{
"_id": "test1",
"actType": "FINDING",
"entries": [{
"text": "U Ergebnis:",
"isDocumentationNode": false,
"children": [{
"text": "U3: Standartext",
"isDocumentationNode": true,
"children": []
}, {
"text": "Brückner durchgeführt o.p.B.",
"isDocumentationNode": true,
"children": []
}, {
"text": "Normale körperliche und altersgerecht Entwicklung",
"isDocumentationNode": true,
"children": [{
"text": "J1/2",
"isDocumentationNode": false,
"children": [{
"text": "Schule:",
"isDocumentationNode": true,
"children": [{
"text": "Ziel Abitur",
"isDocumentationNode": true,
"children": [{
"text": "läuft",
"isDocumentationNode": true,
"children": []
}, {
"text": "gefährdet",
"isDocumentationNode": true,
"children": []
}, {
"text": "läuft",
"isDocumentationNode": true,
"children": []
}, {
"text": "gefährdet",
"isDocumentationNode": true,
"children": []
}
]
}
]
}
]
}
]
}
]
}
]
}
test2.json
{
"_id": "test2",
"actType": "FINDING",
"entries": [{
"text": "U Ergebnis:",
"isDocumentationNode": false,
"children": [{
"text": "U3: Standartext",
"isDocumentationNode": true,
"children": []
}, {
"text": "Brückner durchgeführt o.p.B.",
"isDocumentationNode": true,
"children": []
}, {
"text": "Normale körperliche und altersgerecht Entwicklung",
"isDocumentationNode": true,
"children": [{
"text": "J1/2",
"isDocumentationNode": false,
"children": [{
"text": "Schule:",
"isDocumentationNode": true,
"children": [{
"text": "Ziel Abitur",
"isDocumentationNode": true,
"children": [{
"text": "läuft",
"isDocumentationNode": true,
"children": []
}, {
"text": "gefährdet",
"isDocumentationNode": true,
"children": []
}
]
}
]
}
]
}
]
}
]
}
]
}
Post a Comment for "How To Flatten Multiple, Deeply Nested, Json Files, Into A Pandas Dataframe?"