Pandas Convert String Columns To Datetime, Allowing Missing But Not Invalid
I have a pandas data frame with multiple columns of strings representing dates, with empty strings representing missing dates. For example import numpy as np import pandas as pd
Solution 1:
pandas
doesn't have an option that exactly replicates what you want, here's one way to do it, which should be relatively efficient.
In [4]: dfBad
Out[4]:
custId eventDate registerDate
0106/10/199206/08/20021208/24/201220/08/20122304/24/201504/20/2015344510/14/200910/10/2009In [7]: cols
Out[7]: ['eventDate', 'registerDate']
In [9]: dts = dfBad[cols].apply(lambda x: pd.to_datetime(x, errors='coerce', format='%m/%d/%Y'))
In [10]: dts
Out[10]:
eventDate registerDate
01992-06-102002-06-0812012-08-24 NaT
22015-04-242015-04-203 NaT NaT
42009-10-142009-10-10In [11]: mask = pd.isnull(dts) & (dfBad[cols] !='')
In [12]: mask
Out[12]:
eventDate registerDate
0FalseFalse1FalseTrue2FalseFalse3FalseFalse4FalseFalseIn [13]: mask.any()
Out[13]:
eventDate False
registerDate True
dtype: bool
In [14]: is_bad = mask.any()
In [23]: if is_bad.any():
...: raise ValueError("bad dates in col(s) {0}".format(is_bad[is_bad].index.tolist()))
...: else:
...: df[cols] = dts
...:
---------------------------------------------------------------------------
ValueError Traceback (most recent calllast)
<ipython-input-23-579c06ce3c77>in<module>()
1 if is_bad.any():
----> 2 raise ValueError("bad dates in col(s) {0}".format(is_bad[is_bad].index.tolist()))3else:
4 df[cols] = dts
5
ValueError: bad dates in col(s) ['registerDate']
Solution 2:
Just to take the accepted answer a little further, I replaced the columns of all valid or missing strings with their parsed datetimes, and then raised an error for the remaining unparsed columns:
dtCols = ['eventDate', 'registerDate']
dts = dfBad[dtCols].apply(lambda x: pd.to_datetime(x, errors='coerce', format='%m/%d/%Y'))
mask = pd.isnull(dts) & (dfBad[dtCols] != '')
colHasError = mask.any()
invalidCols = colHasError[colHasError].index.tolist()
validCols = list(set(dtCols) - set(invalidCols))
dfBad[validCols] = dts[validCols] # replace the completely valid/empty string cols with datesif colHasError.any():
raise ValueError("bad dates in col(s) {0}".format(invalidCols))
# raises: ValueError: bad dates in col(s) ['registerDate']print(dfBad) # eventDate got converted, registerDate didn't
The accepted answer contains the main insight, though, which is to go ahead and coerce errors to NaT
and then distinguish the non-empty but invalid strings from the empty ones with the mask.
Post a Comment for "Pandas Convert String Columns To Datetime, Allowing Missing But Not Invalid"