Faster Way To Group Data Than Pandas Groupby
I am implementing a Genetic Algorithm. For this algorithm a number of iterations (between 100 to 500) have to be done where in each iteration all 100 individuals are evaluated for
Solution 1:
let's try:
def get_cost(df, df2):
'''
df: deliveries data
df2: distance data
'''
pivot = np.ceil(df.pivot_table(index=['customer', 'warehouse'], columns=['date'],
values='deliveries', aggfunc='sum', fill_value=0)
.div(20)
)
return pivot.mul(df2.rename_axis(index='customer', columns='warehouse').stack(),
axis='rows').sum().sum()
Post a Comment for "Faster Way To Group Data Than Pandas Groupby"