Pytorch - Pick Best Probability After Softmax Layer
I have a logistic regression model using Pytorch 0.4.0, where my input is high-dimensional and my output must be a scalar - 0, 1 or 2. I'm using a linear layer combined with a soft
Solution 1:
torch.argmax()
is probably what you want:
import torch
x = torch.FloatTensor([[0.2, 0.1, 0.7],
[0.6, 0.2, 0.2],
[0.1, 0.8, 0.1]])
y = torch.argmax(x, dim=1)
print(y.detach())
# tensor([ 2, 0, 1])
# If you want to reshape:
y = y.view(1, -1)
print(y.detach())
# tensor([[ 2, 0, 1]])
Post a Comment for "Pytorch - Pick Best Probability After Softmax Layer"